
Survival probabilities of history-dependent random walks

Uri Keshet1 and Shahar Hod2

1Physics Faculty, Weizmann Institute, Rehovot 76100, Israel
2The Racah Institute of Physics, The Hebrew University, Jerusalem 91904, Israel

�Received 3 June 2005; published 31 October 2005�

We analyze the dynamics of random walks with long-term memory �binary chains with long-range correla-
tions� in the presence of an absorbing boundary. An analytically solvable model is presented, in which a
dynamical phase transition occurs when the correlation strength parameter � reaches a critical value �c. For
strong positive correlations, ���c, the survival probability is asymptotically finite, whereas for ���c it
decays as a power law in time �chain length�.
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Dynamical systems with long-range spatial or temporal
correlations are attracting considerable interest across many
disciplines, lending applications to physical, biological, so-
cial, and economical sciences �see, e.g., �1–7� and references
therein�. Such systems are often analyzed using random
walks, a fundamental concept of statistical physics. Random
walks lend applications to numerous scientific fields �see,
e.g., �8–13� and references therein�. In particular, random
walks in the presence of absorbing traps �boundaries� have
been studied in recent years as models for various systems
such as absorbing-state phase transitions �14,15�, polymer
adsorption �16�, granular segregation �17�, the spreading of
an epidemic �18�, and in the context of complex adaptive
systems �19,20�. In this work, we analytically study random
walks with an absorbing boundary, in which the jump prob-
ability is history-dependent, resulting in long-range correla-
tions.

The statistical properties of data such as DNA strings,
written texts, and financial data �e.g., stock market quotes�
are known to significantly deviate from those of purely ran-
dom sequences �21,7�. Such systems may be studied by map-
ping them onto a correlated sequence of symbols. Although
the nature of the resulting sequence may depend upon the
choice of mapping �see, e.g., �22��, the essential statistical
properties of the original system are often preserved. By
choosing a mapping of these systems onto two symbols �5�,
the problem is reduced to the exploration of correlated binary
chains, which are equivalent to one-dimensional random
walks with a constant step size. These binary chains have
long-range correlations and often exhibit a superdiffusive na-
ture, in which the variance grows asymptotically faster than
the string length.

The preceding discussion motivates a study of random
walks with a history-dependent jump probability, both with
and without an absorbing boundary, as a means of facilitating
our understanding of systems with long-range correlation. In
Ref. �7�, we presented a model for a history-dependent ran-
dom walk. Although simple, this model features a dynamical
phase transition between normal diffusion and superdiffusion
as the correlation strength parameter reaches a critical value.
In this work, we analyze random walks with long-range cor-
relations in the presence of an absorbing boundary.

We begin by introducing a simple model that incorporates
long-range correlations into an otherwise random sequence.

Consider a discrete string of binary symbols, ai� �0,1�, in
which the conditional probability of a given symbol �say,
zero� occurring at the position L+1 is history-dependent, and
is given by

p�k,L� =
1

2
�1 − �

L − 2k

L + L0
� , �1�

where k is the number of such symbols �zeros� appearing in
the preceding L bits. The correlation parameter �, where
−1���1, determines the strength of correlations in the
system. The persistence condition ��0 implies that a given
symbol in the preceding sequence promotes the birth of a
new identical symbol. In the antipersistence regime ��0, on
the other hand, each symbol inhibits the appearance of a new
identical symbol. The parameter L0�1 is a constant transient
time. For L�L0, the sequence is approximately random �un-
correlated�, whereas for L�L0, the effect of correlations
takes over �23�.

In this model, the conditional probability p�k ,L ;� ,L0�
depends on the number of zeros �or unities� in the preceding
bits, and is independent of their arrangement. This allows
one to obtain an analytical description of the system’s dy-
namical behavior. As demonstrated in �7�, this two-parameter
model provides a good description of the observed statistical
properties of various systems such as coarse-grained DNA
strings, written texts, and financial data, when mapped onto a
binary chain.

The probability P�k ,L+1� of finding k identical symbols
�say, zeros� in a sequence of length L+1 follows from the
evolution equation

P�k,L + 1� = p�k − 1,L�P�k − 1,L� + �1 − p�k,L��P�k,L� .

�2�

Crossing to the continuous limit, one obtains the Fokker-
Planck diffusion equation for the correlated process,

�P

�L
=

1

2

�2P

�x2 −
�

L + L0

��xP�
�x

, �3�

where x	2k−L is the distance from the origin in the corre-
sponding random walk, and we have neglected high-order
terms which are irrelevant for 1�L0�L. Solutions of Eq.
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�3� under the initial condition P�x ,L=0�=��x� were given in
�7�.

We introduce an absorbing boundary at x=0, by imposing
the boundary condition P�x	0,L�0�=0. The evolution
equation �3� along with this boundary condition and the ini-
tial condition P�x ,L=0�=��x� has a solution in the form

P�x,L� 

�L + L0��

D�L�3/2 x��x�exp
−
x2

2D�L�� , �4�

where � is the Heaviside step function, and D�L� is given by

D�L;�,L0� 	
L + L0

1 − 2�

1 − � L0

L + L0
�1−2�� . �5�

Equation �5� breaks down in the special case �=�c, where
�c	1/2. In this case, D�L� is given by

D�L;� = �c,L0� 	 �L + L0�ln�L + L0

L0
� . �6�

The first two moments of the distribution function of the
survived walkers are given by �x2=�D�L� /2 and �x2
=2D�L�, where

�A 	
�

−



A�x�P�x,L�dx

�
−



P�x,L�dx

. �7�

The variance of the probability distribution P�x ,L� thus
equals

V�L;�,L0� =
4 − �

2
D�L� . �8�

This result implies that for ���c, the asymptotic variance
scales linearly with the string length, whereas for ���c it
scales as V
L2�. Hence, a history-dependent sequence with
strong positive correlations ����c� is characterized by a
superdiffusion phase in which the variance grows asymptoti-
cally faster than L, both without �7� and with an absorbing
boundary.

The survival probability S�L�	�0
P�x , t�dx of the walkers

is given, for ���c, by

S�L;� � �c� 
 ��L + L0

L0
�1−2�

− 1�−1/2

, �9�

whereas for �=�c we find

S�L;�c� 
 ln−1/2�L + L0

L0
� . �10�

The survival probability thus changes its asymptotic �L
�L0� behavior at the phase transition value �c=1/2, and one
identifies three qualitatively different regimes,

S�L � L0� 
 �L−�1/2�+�, � � �c

ln−1/2�L/L0� , � = �c

const, � � �c.
� �11�

The normalization of the survival probability is sensitive
to the discrete initial conditions. Since the chain is nearly
random for L�L0, the normalization may be approximated
by equating S�L�, for 1�L�L0, to the survival probability
of a purely random, continuous walk,

FIG. 1. �Color online� Survival probability S�L� as a function of
sequence length L. Shown are numerical �solid lines� and analytical
�dashed lines� results for �=−0.8, −0.4, 0, 0.25, 0.5, and 0.8 �from
bottom to top�. Here, x0=0 �half the walkers survive the first step�
and L0=100. The analytical results agree with the numerical ones to
better than 1%.

FIG. 2. �Color online� Survival probability S as a function of
string length L for various boundary locations x0. We present results
for x0=0, −2, −4, and −6 �from bottom to top�, with �=0.2 and
L0=100.
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S0�L � 1� � 1 − 2�
�x0�

 1
�2�L

exp�−
x2

2L
�dx = erf��x0�/�2L� ,

�12�

where x0 is the distance between the absorbing boundary and
the origin. We thus define

S�1 � L � L0� � erf��x0�/�2L� . �13�

In order to confirm the analytical results, we perform nu-
merical simulations of �discrete� binary sequences. Figure 1
displays the resulting survival probability S�L� of correlated
strings with various values of the correlation parameter �.
We find an excellent agreement between the analytical re-
sults �Eqs. �9�, �10�, and �13�� and the numerical ones.

The preceding results, starting from the distribution func-
tion in Eq. �4�, are valid only when the absorbing boundary
is placed at the origin. One would like to generalize the
results for boundaries located at arbitrary locations x0, under
the boundary condition P�x	x0 ,L�0�=0. Note that the dif-
fusion equation �3� is not invariant under the translation x
→x+d, where d is a constant. The generalization of our
solution for x0�0 is therefore nontrivial. Nevertheless, we
have verified numerically that the asymptotic behavior of the
survival probability given by Eq. �11� remains valid for ar-
bitrary values of x0, in all three regimes. The similar
asymptotic behavior for different choices of x0 is demon-
strated numerically in Fig. 2.

The above results can be readily generalized for a biased
random walk with a moving boundary. For example, for the
biased jump probability

p�k,L� =
1

2
�1 + q − �

L − 2k

L + L0
� , �14�

the above results will hold if we apply the transformation x
→x−xc�L�, with

xc�L� 	 q
L + L0

1 − �

1 − � L0

L + L0
�1−�� . �15�

The study of �correlated� random walks in the presence of
an absorbing boundary may be relevant for the analysis of
financial data such as stock market quotes. For example, it is
interesting to study the survival probability S�t� of an inves-
tor, defined as the probability to be in profit for all times
preceding t. This provides a useful measure of the invest-
ment risk.

In summary, in this work we have analyzed the dynamics
of random walks in which the jump probabilities are history-
dependent, in the presence of an absorbing boundary. Using
an analytically solvable model, we identify a dynamical
phase transition characterizing the system’s global behavior.
For small values of the correlation strength ����c�, the
survival probability decays as S
L−��c−��, whereas for �
��c the system is characterized by finite asymptotic survival
probabilities.
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